ATP-sulfurylase, sulfur-compounds, and plant stress tolerance
نویسندگان
چکیده
Sulfur (S) stands fourth in the list of major plant nutrients after N, P, and K. Sulfate (SO4 (2-)), a form of soil-S taken up by plant roots is metabolically inert. As the first committed step of S-assimilation, ATP-sulfurylase (ATP-S) catalyzes SO4 (2-)-activation and yields activated high-energy compound adenosine-5(')-phosphosulfate that is reduced to sulfide (S(2-)) and incorporated into cysteine (Cys). In turn, Cys acts as a precursor or donor of reduced S for a range of S-compounds such as methionine (Met), glutathione (GSH), homo-GSH (h-GSH), and phytochelatins (PCs). Among S-compounds, GSH, h-GSH, and PCs are known for their involvement in plant tolerance to varied abiotic stresses, Cys is a major component of GSH, h-GSH, and PCs; whereas, several key stress-metabolites such as ethylene, are controlled by Met through its first metabolite S-adenosylmethionine. With the major aim of briefly highlighting S-compound-mediated role of ATP-S in plant stress tolerance, this paper: (a) overviews ATP-S structure/chemistry and occurrence, (b) appraises recent literature available on ATP-S roles and regulations, and underlying mechanisms in plant abiotic and biotic stress tolerance, (c) summarizes ATP-S-intrinsic regulation by major S-compounds, and (d) highlights major open-questions in the present context. Future research in the current direction can be devised based on the discussion outcomes.
منابع مشابه
Structural, Biochemical and Genetic Characterization of Dissimilatory ATP Sulfurylase from Allochromatium vinosum
ATP sulfurylase (ATPS) catalyzes a key reaction in the global sulfur cycle by reversibly converting inorganic sulfate (SO4 (2-)) with ATP to adenosine 5'-phosphosulfate (APS) and pyrophosphate (PPi). In this work we report on the sat encoded dissimilatory ATP sulfurylase from the sulfur-oxidizing purple sulfur bacterium Allochromatium vinosum. In this organism, the sat gene is located in one op...
متن کاملSoybean ATP sulfurylase, a homodimeric enzyme involved in sulfur assimilation, is abundantly expressed in roots and induced by cold treatment.
Soybeans are a rich source of protein and a key feed ingredient in livestock production, but lack sufficient levels of cysteine and methionine to meet the nutritional demands of swine or poultry as feed components. Although engineering the sulfur assimilatory pathway could lead to increased sulfur-containing amino acid content, little is known about this pathway in legumes. Here, we describe th...
متن کاملKinetic mechanism of the dimeric ATP sulfurylase from plants
In plants, sulfur must be obtained from the environment and assimilated into usable forms for metabolism. ATP sulfurylase catalyses the thermodynamically unfavourable formation of a mixed phosphosulfate anhydride in APS (adenosine 5'-phosphosulfate) from ATP and sulfate as the first committed step of sulfur assimilation in plants. In contrast to the multi-functional, allosterically regulated AT...
متن کاملOverexpression of ATP sulfurylase in indian mustard leads to increased selenate uptake, reduction, and tolerance
In earlier studies, the assimilation of selenate by plants appeared to be limited by its reduction, a step that is thought to be mediated by ATP sulfurylase. Here, the Arabidopsis APS1 gene, encoding a plastidic ATP sulfurylase, was constitutively overexpressed in Indian mustard (Brassica juncea). Compared with that in untransformed plants, the ATP sulfurylase activity was 2- to 2.5-fold higher...
متن کاملIdentification of redox-regulated components of arsenate (As(V)) tolerance through thiourea supplementation in rice.
Arsenic (As) is a ubiquitously present environmental carcinogen that enters into the human food chain through rice grains. In our previous research, the application of thiourea (TU; a non-physiological thiol based ROS scavenger) has been demonstrated to enhance salt and UV stress tolerance as well as the crop yield under field conditions. These effects were associated with the ability of TU to ...
متن کامل